

# 2023 Trial Data: Comparative Summary for <sup>1</sup>HiCane®, <sup>2</sup>Syncron®, and Untreated Control

# **Key Metrics and Comparisons**

# 1. Budbreak Percentage

- Syncron (33 DBBB): Achieved the highest budbreak percentage, averaging 57.2% in certain trials.
- **HiCane**: Followed closely with a **55.1**% budbreak in targeted conditions, slightly behind Syncron across trials.
- **Untreated Control**: Consistently lower at **52.2%**, highlighting the efficacy of both products.
- Implication: Syncron, when applied 33 days before budbreak (DBBB), provides a reliable alternative, with performance comparable to HiCane in Gold3 kiwifruit orchards.

## 2. Budbreak Duration

- **HiCane**: Achieved synchronization with a budbreak duration of **28–30 days**.
- Syncron (33 DBBB): Slightly longer duration, averaging 30–33 days.
- Untreated Control: Significantly prolonged duration of 40+ days.
- **Implication**: Syncron is effective in improving synchronization, though not as condensed as HiCane.

### 3. Yield Metrics

- Flowers per Winter Bud:
  - HiCane: 0.55 king flowers/winter bud.
  - o Syncron (33 DBBB): **0.43 king flowers/winter bud**.
  - Untreated Control: 0.35 king flowers/winter bud.
- Crop Load (Fruit/m²):
  - o HiCane: 85 fruits/m<sup>2</sup>.
  - Syncron: 73 fruits/m².
  - Untreated Control: 44 fruits/m².
- Implication: Both products significantly enhance fruit yield, with HiCane maintaining a slight edge over Syncron.



# 2024 Trial Data: EXPANDED Comparative Summary for HiCane, Syncron, and Untreated Control

## 1. Budbreak Percentage

- HiCane: Achieved the highest budbreak percentage at 66.9%, reinforcing its reputation as a highly effective budbreak enhancer.
  - Performance is consistent but tied to strict timing (optimal 28–42 days before natural budbreak).
  - Dependent on precise weather conditions, which can limit flexibility for growers.
- Syncron (Double Application): Delivered 61.3% budbreak, significantly higher than the Untreated Control (48.3%).
  - Double application protocol (6 days apart) improves efficacy by creating a "second window" for activation, minimizing weather-related risks.
  - Narrowing performance gap with HiCane suggests potential for long-term adoption.
- Untreated Control: Showed the lowest budbreak percentage at 48.3%, reflecting the natural baseline without intervention.
  - o Useful as a control to evaluate product effectiveness.

# • Implications:

- Syncron's double application demonstrates high reliability and reduced dependency on weather precision compared to HiCane.
- It is a promising alternative for regions with unpredictable environmental conditions.

#### 2. Budbreak Duration

- **HiCane**: Achieved a condensed budbreak duration of **28.5 days**, ensuring synchronized budburst and uniform flowering.
  - Particularly useful for streamlining subsequent orchard management practices like thinning and pest control.
- Syncron (Double Application): Slightly extended budbreak duration at 27.4 days, comparable to HiCane.
  - o Benefits from a balanced synchrony without risking uneven growth.



• **Untreated Control**: Longest duration at **31.2 days**, leading to uneven growth and staggered management.

## Implications:

- Syncron's duration is competitive with HiCane and provides more uniform growth compared to untreated vines.
- o Growers benefit from manageable flowering and fruiting timelines.

#### 3. Yield Metrics

# • Fruit per Winter Bud:

- HiCane: Produced the highest number of fruits per winter bud at 2.11, maximizing yield potential.
- Syncron (Double Application): Achieved 1.84 fruits per winter bud, a slight improvement over previous years.
- Untreated Control: Lowest at 1.24 fruits per winter bud, indicating the importance of budbreak enhancers for productivity.

# • Crop Load (Fruit/m<sup>2</sup>):

- o HiCane: Highest crop density at 96 fruits/m².
- Syncron: Competitive at 80 fruits/m², highlighting substantial yield improvements compared to untreated vines (44 fruits/m²).

# Implications:

- Syncron offers a balanced trade-off between yield enhancement and safety, appealing to growers seeking reliable productivity.
- Slightly lower yields compared to HiCane are offset by its superior safety and environmental profile.



# Safety Metrics for 2024: HiCane vs Syncron vs Untreated Control

| Safety Metric           | HiCane                         | Syncron                           | Untreated<br>Control |
|-------------------------|--------------------------------|-----------------------------------|----------------------|
| Worker Health           | High risk, PPE required        | Low risk, standard PPE sufficient | Safe, no<br>hazards  |
| Environmental<br>Impact | Potential for contamination    | Eco-friendly, no residue          | No impact            |
| Residue on Fruit        | Withholding period required    | Residue-free                      | Residue-free         |
| Crop Phytotoxicity      | Possible under poor conditions | None observed                     | None<br>observed     |

# **Practical Implications**

- 1. **Regulatory Compliance**: Syncron meets stringent safety and environmental regulations, including organic certifications.
- 2. **Cost Efficiency**: Syncron eliminates PPE, training, and compliance costs associated with HiCane.
- 3. **Marketability**: Residue-free certification allows growers to access high-value export markets sooner.



# 1. Worker Safety

- HiCane: Hydrogen cyanamide (HiCane) poses significant risks to workers, including potential for:
  - Skin irritation or burns.
  - o Respiratory hazards if inhaled during application.
  - Mandatory use of PPE, specialized training, and restricted access during and post-application.
- **Syncron**: No recorded adverse effects on worker health.
  - Certified safe for handling without specialized PPE beyond standard protocols.
  - o Suitable for organic farming under regulatory compliance.
- Untreated Control: No safety hazards associated as no chemicals are applied.
- **Implication**: Syncron provides a safer work environment, reducing risks and the cost of compliance associated with HiCane.

#### 2. Environmental Impact

- HiCane:
  - Potential for leaching into groundwater.
  - o High risk to non-target organisms, including aquatic life.
  - Requires careful application to prevent environmental contamination.

#### Syncron:

- o Formulated with natural compounds.
- o No residue accumulation in soil or water.
- o Approved for organic agriculture under EC regulations.
- Untreated Control: Neutral environmental impact due to lack of treatment.
- **Implication**: Syncron is environmentally preferable, aligning with sustainability goals and reducing potential compliance issues for growers.

## 3. Residue on Fruit



- **HiCane**: Hydrogen cyanamide leaves no direct residue but requires extended withholding periods to ensure safety for fruit consumers.
- Syncron: Leaves no detectable residues on fruit or vines.
  - Allows quicker market access post-application, supporting flexible harvest timing.
- Untreated Control: No residue concerns as no treatment is applied.
- **Implication**: Syncron offers a residue-free solution, particularly important for export markets with stringent residue regulations.

# 4. Crop Phytotoxicity

#### HiCane:

- o No significant phytotoxic effects observed during 2024 trials.
- However, potential for damage exists under suboptimal application conditions (e.g., extreme heat).

## Syncron:

- Zero phytotoxic effects reported, even under varying environmental conditions.
- Safe under a wider range of temperatures and humidity levels compared to HiCane.

#### Untreated Control:

- o As expected, no phytotoxicity due to lack of treatment.
- Implication: Syncron minimizes risk of crop damage, enhancing yield reliability.

 $<sup>^{\</sup>circ}$   $^{1}$  HiCane $^{\circ}$  is a registered trademark of Nufarm Limited.  $^{2}$  Syncron $^{\circ}$  is a registered trademark of Daymsa.  $^{3}$  Calcinit $^{\circ}$  is a registered trademark of Yara Fertilizers (nz) Limited.